Азот в жизни растений

История открытия

В 1772 году Генри Кавендиш провёл опыт: он многократно пропускал воздух над раскалённым углём, затем обрабатывал его щёлочью, в результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем поглощался щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент), и описал его как мефитический воздух (от английского mephitic — ‘вредный’). В том же году Кавендиш сообщил об этом опыте Джозефу Пристли

Интересен тот факт, что он сумел связать азот с кислородом при помощи разрядов электрического тока, а после поглощения оксидов азота в остатке получил небольшое количество газа, абсолютно инертного, хотя, как и в случае с азотом, не смог понять, что выделил новый химический элемент — инертный газ аргон

Джозеф Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, также неверно истолковал полученные результаты — он решил, что выделил флогистированный воздух (т. е. насыщенный флогистоном)[5]:41.

В сентябре 1772 года шотландский химик Даниэль Резерфорд опубликовал магистерскую диссертацию «О так называемом фиксируемом и мефитическом воздухе», в которой описал азот как вредный, ядовитый воздух и предположил, что это новый химический элемент[5]:41, а также описал основные свойства азота (не реагирует со щелочами, не поддерживает горения, непригоден для дыхания). Резерфорд также был сторонником флогистонной теории, поэтому также не смог понять, что же он выделил. Таким образом, чётко определить первооткрывателя азота невозможно

В то же время азот выделил Карл Шееле: летом 1772 года он получил азот по методу Кавендиша и исследовал его в течение пяти лет, затем опубликовал результаты своих исследований. В этой публикации Шееле первым описал воздух как смесь отдельных газов: «огненного воздуха» (кислорода) и «грязного воздуха» (азота). Из-за того, что Шееле задержался с публикацией своих исследований, до сих пор идут споры о первооткрывателе азота[5]:41.

Происхождение названия

Название «азо́т» (ф. azote, по наиболее распространённой версии, от др.-греч. ἄζωτος — безжизненный), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье, который в то время в составе группы других французских учёных разрабатывал принципы химической номенклатуры, в том же году это предложение опубликовано в труде «Метод химической номенклатуры»[6][5]:41. Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках. Окончательно в русском языке этот вариант названия закрепился после выхода в свет книги Германа Гесса«Основания чистой химии» в 1831 году[7].

Само слово «азот» (без связи с газом) известно с древности и употреблялось философами и алхимиками средневековья для обозначения «первичной материи металлов», так называемого «меркурия» у философов, «двойного меркурия» у алхимиков. «Первичную материю металлов» алхимики считали «альфой и омегой» всего сущего. И слово для её обозначения составили из начальных и конечных букв алфавитов трёх языков, считавшихся священными, — латинского, греческого и древнееврейского: а, альфа, алеф и зет, омега, тов — AAAZOT. Инициатор создания новой химической номенклатуры Гитон де Морво отмечал в своей «Методической энциклопедии» (1786 год) алхимическое значение термина[8].

Многие современники Лавуазье считали название элемента неудачным, в частности, Жан-Антуан Шапталь предложил название фр. nitrogène — «рождающий селитру» (и использовал это название в своей книге «Элементы химии»[9]). Поныне соединения азота называют «нитраты», «нитриты» и «нитриды»[5]:42.

Во французском языке название «нитроген» не прижилось, зато в английском, испанском, венгерском и норвежском используется производное от этого слова. В немецком языке используется название нем. Stickstoff, что означает «удушающее вещество», аналогично в нидерландском; схожие по значению названия используются в некоторых славянских языках, например, хорватское и словенское dušik (пр. «душик»)

Название «азот», помимо французского и русского, принято в итальянском, турецком и ряде славянских языков, а также во многих языках народов бывшего СССР.

До принятия символа N в России, Франции и других странах использовался символ Az, который можно видеть, например, в статье А. М. Бутлерова об аминах 1864 года

Азот в природе

Изотопы

Природный азот состоит из двух стабильных изотопов 14N — 99,635 % и 15N — 0,365 %.

Искусственно получены четырнадцать радиоактивных изотопов азота с массовыми числами от 10 до 13 и от 16 до 25. Все они являются очень короткоживущими изотопами. Самый стабильный из них 13N имеет период полураспада 10 мин.

Спин ядер стабильных изотопов азота: 14N — 1; 15N — 1/2.

Распространённость

Азот — один из самых распространённых элементов на Земле[4]. Вне пределов Земли азот обнаружен в газовых туманностях, солнечной атмосфере, на Уране, Нептуне, в межзвёздном пространстве и др. Атмосферы таких планет-спутников как Титан, Тритон, а также карликовой планеты Плутон в основном состоят из азота. Азот — четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода).

Азот в форме двухатомных молекул N2 составляет большую часть атмосферы Земли, где его содержание составляет 75,6 % (по массе) или 78,084 % (по объёму), то есть около 3,87⋅1015 т.

Содержание азота в земной коре, по данным разных авторов, составляет (0,7—1,5)⋅1015 т (причём в гумусе — порядка 6⋅1010 т), а в мантии Земли — 1,3⋅1016 т. Такое соотношение масс заставляет предположить, что главным источником азота служит верхняя часть мантии, откуда он поступает в другие оболочки Земли с извержениями вулканов.

Масса растворённого в гидросфере азота, учитывая, что одновременно происходят процессы растворения азота атмосферы в воде и выделения его в атмосферу, составляет около 2⋅1013 т, кроме того, примерно 7⋅1011 т азота содержатся в гидросфере в виде соединений.

Биологическая роль

Азот является химическим элементом, необходимым для существования животных и растений, он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В составе живых клеток по числу атомов азота около 2 %, по массовой доле — около 2,5 % (четвёртое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9⋅1011 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия с примесями других соединений), норвежская, индийская селитры.

Химия гидридов азота при давлениях порядка 800 ГПа (около 8 миллионов атмосфер) более разнообразна, чем химия углеводородов при нормальных условиях. Отсюда появилась гипотеза, что азот может быть основой пока неоткрытой жизни на таких планетах, как Уран и Нептун

Круговорот азота в природе

 Основная статья: Круговорот азота Фиксация атмосферного азота в природе происходит по двум основным направлениям: абиогенному и биогенному. Первый путь включает главным образом реакции азота с кислородом. Так как азот химически весьма инертен, для окисления требуются большие количества энергии (высокие температуры). Эти условия достигаются при разрядах молний, когда температура достигает 25 000 °C и более. При этом происходит образование различных оксидов азота. Существует также вероятность, что абиотическая фиксация происходит в результате фотокаталитических реакций на поверхности полупроводников или широкополосных диэлектриков (песок пустынь).

Однако основная часть молекулярного азота (около 1,4⋅108 т/год) фиксируется биотическим путём. Долгое время считалось, что связывать молекулярный азот могут только небольшое количество видов микроорганизмов (хотя и широко распространённых на поверхности Земли): бактерии Azotobacter и Clostridium, клубеньковые бактерии бобовых растений Rhizobium, цианобактерии Anabaena, Nostoc и др. Сейчас известно, что этой способностью обладают многие другие организмы в воде и почве, например, актиномицеты в клубеньках ольхи и других деревьев (всего 160 видов). Все они превращают молекулярный азот в соединения аммония (NH4+). Этот процесс требует значительных затрат энергии (для фиксации 1 г атмосферного азота бактерии в клубеньках бобовых расходуют порядка 167,5 кДж, то есть окисляют примерно 10 г глюкозы). Таким образом, видна взаимная польза от симбиоза растений и азотфиксирующих бактерий — первые предоставляют вторым «место для проживания» и снабжают полученным в результате фотосинтеза «топливом» — глюкозой, вторые обеспечивают необходимый растениям азот в усваиваемой ими форме.

Азот в форме аммиака и соединений аммония, получающийся в процессах биогенной азотфиксации, быстро окисляется до нитратов и нитритов (этот процесс носит название нитрификации). Последние, не связанные тканями растений (и далее по пищевой цепи травоядными и хищниками), недолго остаются в почве. Большинство нитратов и нитритов хорошо растворимы, поэтому они смываются водой и, в конце концов, попадают в мировой океан (этот поток оценивается в 2,5—8⋅107 т/год).

Азот, включённый в ткани растений и животных, после их гибели подвергается аммонификации (разложению содержащих азот сложных соединений с выделением аммиака и ионов аммония) и денитрификации, то есть выделению атомарного азота, а также его оксидов. Эти процессы целиком происходят благодаря деятельности микроорганизмов в аэробных и анаэробных условиях.

В отсутствие деятельности человека процессы связывания азота и нитрификации практически полностью уравновешены противоположными реакциями денитрификации. Часть азота поступает в атмосферу из мантии с извержениями вулканов, часть прочно фиксируется в почвах и глинистых минералах, кроме того, постоянно идёт утечка азота из верхних слоёв атмосферы в межпланетное пространство.

Токсикология азота и его соединений

Сам по себе атмосферный азот слишком инертен, чтобы оказывать непосредственное влияние на организм человека и млекопитающих. Тем не менее, при повышенном давлении он вызывает наркоз, опьянение или удушье (при недостатке кислорода); при быстром снижении давления азот вызывает кессонную болезнь

Многие соединения азота очень активны и нередко токсичны.

Физические свойства

 

Азот немного легче воздуха. Его плотность составляет 1,2506 кг/м³ (0 °С, 760 мм рт. ст.), температура плавления — -209,86 °С, кипения — -195,8 °С. Азот с трудом сжижается. Его критическая температура относительно низка (-147,1 °С), при этом критическое давление довольно высоко — 3,39 Мн/м². Плотность в жидком состоянии — 808 кг/м³. В воде этот элемент менее растворим, чем кислород: в 1 м³ (при 0 °С) Н₂О может раствориться 23,3 г N. Этот показатель выше при работе с некоторыми углеводородами.

Химические свойства азота

При нагревании до невысоких температур этот элемент взаимодействует только с активными металлами. Например, с литием, кальцием, магнием. С большинством других веществ азот вступает в реакцию в присутствии катализаторов и/или при высокой температуре.

Хорошо изучены соединения N с О₂ (кислородом) N₂O₅, NO, N₂O₃, N₂O, NO₂. Из них при взаимодействии элементов (t — 4000 °С) образуется оксид NO. Далее в процессе охлаждения он окисляется до NO₂. Оксиды азота образуются в воздухе при прохождении атмосферных разрядов. Их можно получить действием ионизирующих излучений на смесь N с О₂.

Химические свойства азота

При растворении в воде N₂O₃ и N₂O₅ соответственно получаются кислоты HNO₂ и HNO₂, образующие соли — нитраты и нитриты. Азот соединяется с водородом исключительно в присутствии катализаторов и при высокой температуре, образуя NH₃ (аммиак). Кроме того, известны и другие (они довольно многочисленны) соединения N с H₂, к примеру диимид HN = NH, гидразин H₂N-NH₂, октазон N₈H₁₄, кислота HN₃ и другие.

Стоит сказать, что большинство соединений водород + азот выделены исключительно в виде органических производных. Этот элемент не взаимодействует (непосредственно) с галогенами, поэтому все его галогениды получают только косвенным путем. К примеру, NF₃ образуется при взаимодействии аммиака с фтором.

Большинство галогенидов азота — малостойкие соединения, более устойчивы оксигалогениды: NOBr, NO₂F, NOF, NOCl, NO₂Cl. Непосредственного соединения N с серой также не происходит, N₄S₄ получается в процессе реакции аммиак + жидкая сера. Во время взаимодействия раскаленного кокса с N образуется циан (CN)₂. В процессе нагревания ацетилена С₂Н₂ с азотом до 1500 °С можно получить цианистый водород HCN. При взаимодействии N с металлами при относительно высоких температурах образуются нитриды (к примеру, Mg₃N₂).

При воздействии на обычный азот электроразрядов [при давлении 130–270 н/м² (соответствует 1–2 мм рт. cт.)] и при разложении Mg₃N₂, BN, TiNx и Ca₃N₂, а также при электроразрядах в воздухе может быть образован активный азот, обладающий повышенным запасом энергии. Он, в отличие от молекулярного, весьма энергично взаимодействует с водородом, парами серы, кислородом, некоторыми металлами и фосфором.

Азот входит в состав довольно многих важнейших органических соединений, в том числе — аминокислот, аминов, нитросоединений и прочих.

Область применения

Применение азота

Основная часть получаемого свободного азота используется при промышленном производстве аммиака, который потом в довольно больших количествах перерабатывается на удобрения, взрывчатые вещества и т. п.

Кроме прямого синтеза NH₃ из элементов, применяется разработанный в начале прошлого века цианамидный метод. Он основан на том, что при t = 1000 °С карбид кальция (образованный накаливанием смеси угля и извести в электропечи) реагирует со свободным азотом (формула: СаС₂ + N₂ = CaCN₂ + С). Полученный цианамид кальция под действием разогретого водяного пара разлагается на CaCO₃ и 2NH₃.

В свободном виде данный элемент применяется во многих отраслях промышленности: в качестве инертной среды при разнообразных металлургических и химических процессах, при перекачке горючих жидкостей, для заполнения пространства в ртутных термометрах и т. д. В жидком состоянии он используется в различных холодильных установках. Его транспортируют и хранят в стальных сосудах Дьюара, а сжатый газ — в баллонах.

Широко применяют и многие соединения азота. Их производство стало усиленно развиваться после Первой мировой войны и на данный момент достигло поистине огромных масштабов.

Фиксация азота и азотный цикл.

Термин «фиксация азота» означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Строение ядра и электронных оболочек.

В природе существуют два стабильных изотопа азота: с массовым числом 14 (

Молекулярный азот.

Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N–N равно 1,095 Å. Как и в случае с водородом существуют молекулы азота с различным спином ядра – симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a – кубическая и b – гексагональная с температурой перехода a ® b –237,39° С. Модификация b плавится при –209,96° С и кипит при –195,78° C при 1 атм (см. табл. 1).

Энергия диссоциации моля (28,016 г или 6,023Ч1023 молекул) молекулярного азота на атомы (N2 2N) равна примерно –225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.

Получение азота

В лаборатории этот элемент может быть легко получен в процессе нагревания концентрированного раствора нитрита аммония (формула: NH₄NO₂ = N₂ + 2H₂O). Технический метод получения N основан на разделении заранее сжиженного воздуха, который в дальнейшем подвергается разгонке.

Азот из атмосферы.

Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.

   Аммиак NH3

Бинарное соединение , степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H)3] (sp3-гибридизация). Наличие у азота в молекуле NH3  донорской пары электронов на  sp3-гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH4. Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H2O при 20˚C); доля в насыщенном растворе равна 34% по массе и  99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N-3) и окислительные (за счет H+1) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным  HCl, почернение бумажки, смоченной раствором Hg2(NO3)2.

Промежуточный продукт при синтезе HNO3  и солей аммония. Применяется  в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH3(г) ↔ N2 + 3H2
NH3(г) + H2O  ↔ NH3 *  H2O (р)↔ NH4++ OH
NH3(г) + HCl(г) ↔ NH4Cl(г) белый «дым»
4NH3 + 3O2 (воздух) = 2N2 + 6 H2O   (сгорание)
4NH3 + 5O2 =  4NO+ 6 H2O   (800˚C, кат. Pt/Rh)
2 NH3 + 3CuO = 3Cu + N+ 3 H2O   (500˚C)
2 NH3 + 3Mg = Mg3N2 +3 H2           (600 ˚C )
NH3(г) + CO2(г) + H2O = NH4HCO3    (комнатная температура, давление)
Получение.   В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью:  Ca(OH)2 + 2NH4Cl = CaCl2+ 2H2O +NH3
Или кипячение водного раствора аммиака с последующим осушением газа.
  В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.


  Гидрат аммиака NH3 *H2O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы  NH3 и H2O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH4 и анион OH). Катион аммония имеет правильно-тетраэдрическое строение   (sp3-гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N-3) в концентрированном растворе. Вступает в реакцию ионного обмена и комплексообразования.

   Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.
В 1 М растворе аммиака содержится в основном гидрат NH3 *H2O и лишь 0,4% ионов NH4  OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH4 OH» практически не содержится в растворе,  нет такого соединения и в твердом гидрате.
Уравнения важнейших реакций:
NH3 H2O (конц.)  = NH3↑ + H2O    (кипячение с NaOH)
NH3 H2O   + HCl (разб.)  = NH4Cl + H2O
3(NH3 H2O) (конц.)   + CrCl3 = Cr(OH)3↓ + 3 NH4Cl
8(NH3 H2O) (конц.)   + 3Br2(p) = N2↑ + 6 NH4Br + 8H2O (40-50˚C)
2(NH3 H2O) (конц.)   + 2KMnO4 = N2↑ + 2MnO2↓ + 4H2O + 2KOH
4(NH3 H2O) (конц.)    + Ag2O = 2[Ag(NH3)2]OH + 3H2O
4(NH3 H2O) (конц.)    + Cu(OH)2 + [Cu(NH3)4](OH)2 + 4H2O
6(NH3 H2O) (конц.)   + NiCl2 = [Ni(NH3)6]Cl2 + 6H2O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

Оксиды азота

 Монооксид азота NO

  Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N2О2  со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней. Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами . весьма реакционноспособная смесь NO и NO2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.
Уравнения важнейших реакций:
2NO + O2(изб.) = 2NO  (20˚C)
2NO + C(графит) =  N2 +  CО2 (400- 500˚C)
10NO + 4P(красный) =  5N2 + 2P2O5 (150- 200˚C)
2NO + 4Cu = N+ 2 Cu2O   (500- 600˚C)
Реакции на смеси  NO и  NO2:
NO + NO2  +H2O = 2HNO2(p)
NO + NO+ 2KOH(разб.) = 2KNO2 + H2O
NO + NO2  +  Na2CO3 =  2Na2NO+  CО2 (450- 500˚C)
Получение в промышленности: окисление аммиака кислородом на катализаторе, в лаборатории  — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO3 + 6Hg = 3Hg2(NO3)2 + 2NO + 4 H2O
или восстановлении нитратов:
2NaNO2 + 2H2SO4 + 2NaI = 2NO↑ + I2↓ + 2 H2O + 2Na2SO4

Диоксид азота NO2

Кислотный оксид, условно отвечает двум кислотам — HNO2 и  HNO3 (кислота для N4 не существует). Бурый газ, при комнатной температуре мономер  NO2, на холоду жидкий бесцветный димер N2О4 (тетраоксид диазота).  Полностью реагирует с водой, щелочами. Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.
Уравнение важнейших реакций:
2NO2 ↔ 2NO + O2
4NO2(ж) + H2O = 2HNO3 + N2О3 (син.)     (на холоду)
3 NO2 + H2O = 3HNO3 + NO↑
2NO2 + 2NaOH(разб.) = NaNO2 + NaNO3 + H2O
4NO2 + O2+ 2 H2O = 4 HNO3
4NO2 + O2 + KOH = KNO3 + 2 H2O
2NO2 + 7H2 = 2NH3 + 4 H2O   (кат. Pt, Ni)
NO2 + 2HI(p) = NO↑ + I2↓ + H2O
NO2 + H2O + SO2 = H2SO4 + NO↑   (50- 60˚C)
NO+ K = KNO2
6NO2 + Bi(NO3)3 + 3NO   (70- 110˚C)
  Получение:  в промышленности —   окислением NO  кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO3 (конц.,гор.) + S = H2SO4 + 6NO2↑ + 2H2O
5HNO3 (конц.,гор.) + P (красный) = H3PO4  + 5NO2 ↑ + H2O
2HNO3 (конц.,гор.) +  SO2 = H2SO+ 2 NO2

Оксид диазота N2O

Оксид диазота N2O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N2O + C = CO2 + 2N2   (450˚C)
N2O + Mg = N2 + MgO (500˚C)
Получают термическим разложением нитрата аммония:
NH4NO3 = N2O + 2 H2O (195- 245˚C)
применяется в медицине, как анастезирующее средство.

Триоксид диазота N2O3

Триоксид диазота N2O3

При низких температурах –синяя жидкость, ON꞊NO2, формальная степень окисления азота +3. При 20 ˚C  на 90% разлагается на смесь бесцветного NO  и  бурого NO2 («нитрозные газы», промышленный дым – «лисий хвост»).  N2O3 – кислотный оксид, на холоду с водой образует HNO2 , при нагревании реагирует иначе:
3N2O3 + H2O = 2HNO3 + 4NO↑
Со щелочами дает соли HNO2, например NaNO2.
Получают взаимодействием  NO c O2 (4NO + 3O2 = 2N2O3) или с NO2 (NO2 + NO = N2O3)
при сильном охлаждении. «Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазота N2O5

Пентаоксид диазотаN2O5

Бесцветное,  твердое вещество, O2N – O – NO2, степень окисления  азота равна +5. При комнатной температуре за 10 ч разлагается на NO2 и O2. Реагирует с водой и щелочами как кислотный оксид:
N2O5 + H2O = 2HNO3
N2O5 + 2NaOH = 2NaNO3 + H2
Получают дегидротацией дымящейся азотной кислоты:
2HNO3  + P2O5 = N2O5 + 2HPO3
или окислением NO2 озоном при  -78˚C:
2NO2 + O3 = N2O5 + O2

Роль азотных удобрений в жизни растений

Роль азотных удобрений в жизни растений

Азот входит в состав белков, нуклеиновых кислот, ферментов и других органических соединений, которые играют важнейшую роль в построении клеток. Азот содержится и в хлорофилле, с помощью которого растения усваивают солнечную энергию.

Таким образом достаточное количество азота помогает растениям адаптироваться весной к новому жизненному циклу, сформировать вегетативную массу, повышает устойчивость к вредителям и болезням, урожайность и качество плодов.

К чему приводит недостаток азота у растений

К чему приводит недостаток азота у растений

При недостатке азота рост и развитие растений тормозятся, они слабо цветут, плохо завязывают плоды.

Признаки недостатка азота: листья мельчают, желтеют и подсыхают по краям. Старые листья желтеют раньше и сильнее молодых. 

Чувствительны к недостатку азота: все растения в период выращивания рассадой, газонные злаки, тыквенные культуры (кабачки, огруцы, дыни, арбузы), малина. Сильнее всего растения нуждаются в азоте весной, после пробуждения.  

В то же время не следует перекармливать растения, при избытке азота они «жируют», т. е. наращивают много вегетативной массы в ущерб цветению. 

Сроки и нормы внесения азотных удобрений

Сроки и нормы внесения азотных удобрений

Азотные удобрения вносят, начиная с весны, при наступлении первых теплых дней (в середине апреля). Большинство азотных удобрений легко вымывается из почвы, поэтому применение их ранней весной нерационально. Осенью азот из подкормок исключают, иначе растения останутся зимовать с молодыми невызревшими побегами. 

Первая подкормка (апрель): 100-150 г азота на приствольный круг. Норма указана по действующему веществу: таким образом, мочевину вносят 200 г (содержит 45-46% действующего вещества), аммиачную селитру — 250-300 г (содержит 30-34% действующего вещества). 

Вторая подкормка (середина мая): вносится под плодовые деревья и кустарники, декоративные можно не подкармливать; 50-100 г  (по действующему веществу) азота на приствольный круг. 

Третья подкормка (2-ая декада июня): аналогично второй, вносится для сохранения завязей.

Начиная с июля подкармливать азотом растения не рекомендуют: в противном случае они не успеют подготовиться к зиме.

Нормы указаны для деревьев, для кустарников норму уменьшают в 2-3 раза, для вересковых и хвойных — вносят 1/8 от приведенных норм. Для внекорневых подкормок концентрацию уменьшают в 2-3 раза; лучше использовать мочевину, т.к. она не обжигает листья — 5–10 г на 1 л воды.  

Как определить, что растение нуждается в подкормке

В природе запасы азота сосредоточены, в первую очередь, в гумусе; в доступную для растений форму это вещество переходит в результате разложения органики под воздействием почвенных микроорганизмов. Однако естественных запасов для полноценного развития овощных культур и хорошего урожая недостаточно, поэтому их необходимо пополнять из иных источников.
Признаки азотного голодания часто проявляются замедлением роста и развития; листья могут пожелтеть или покрыться крупными желтовато-зелеными пятнами. У земляники по краям листьев появляется красная кайма, плохо образуются усы, а у роз слабеет цветение, медленно растут и плохо одревесневают побеги. 

Признаки азотного голодания часто проявляются замедлением роста и развития
Признаки азотного голодания часто проявляются отставанием в росте и развитии
Томаты начинают отставать в росте, сбрасывают завязавшиеся плоды; листья их мельчают и желтеют. У свеклы желтеют и быстро отмирают листья, рост их замедляется. 
Если азота не хватает деревьям, они слабо ветвятся и тяжело переносят зимние холода. Плоды завязываются мелкие, да и те часто осыпаются. У семечковых культур листья бледнеют и мельчают; у косточковых может краснеть кора веток. 

Ищем причину дефицита

Прежде чем бежать за удобрением, не лишним будет проанализировать причины проблемы, особенно если вы регулярно вносите подкормки, а признаки дефицита питания, тем не менее, проявляются.
Дело в том, что далеко не весь азот доступен растениям. Его усвоению может препятствовать, к примеру, повышенная кислотность почвы. Температура (не столько воздуха, сколько земли) — другое существенное условие. А на рыхлых песчаных грунтах, плохо удерживающих влагу, легкорастворимые компоненты удобрений слишком быстро вымываются при поливе. 

Выбираем правильное решение

Здесь нам потребуются кое-какие теоретические знания. Самое важное, что следует запомнить: есть две формы азота, доступных для усвоения растениями, — нитратная и аммиачная. И в зависимости от условий, более эффективной оказывается либо одна, либо другая:

  • при повышенной кислотности почвы нужен нитратный азот;
  • если почва нейтральная или близкая к щелочной, эффективнее аммиачный азот;
  • пока почва не прогрелась, лучше «работает» нитратный азот (когда придет тепло, приемлемыми станут оба варианта). 

 
Есть две формы азота, доступных для усвоения растениями, - нитратная и аммиачная
Не весь азот доступен растениям, поэтому важно выбрать правильное удобрение
На водопроницаемых песчаных почвах рекомендуется вносить быстродействующие удобрения в малых дозах, но регулярно (не забывая одновременно улучшать состав и структуру почвы). В ряде случаев целесообразно применять внекорневые подкормки 

Перекармливать — вредно

Все знают, что недостаток питания растению вреден. Но избыток азота на результатах тоже сказывается не лучшим образом. Он вызывает обильный рост зеленой массы, а вот цветов и плодов от «перекормленного» растения можно и не дождаться вовсе. Но это еще не самое плохое. Такие культуры оказываются уязвимыми, и грибные болезни поражают их чаще прочих. 
Если деревья и кустарники получили чрезмерную дозу азота осенью, резкие перепады температур способны погубить их: корневая система не может сопротивляться холоду, и при промерзании почвы гибнет. Вымерзают ростовые и плодовые побеги — даже если такое растение и перезимует, хорошего урожая будущим летом оно уже не даст. 
Перекармливать - вредно
Перекармливать растения азотом вредно
А хуже всего то, что избыток азота в виде солей многие растения (в частности, свекла, ранний картофель, салат и другие) склонны накапливать. Это те самые нитраты, о вреде которых все наслышаны. Именно страх перед нитратами заставляет многих отказаться от использования азотных удобрений — а ведь решение довольно простое: не надо чрезмерно увлекаться подкормками. 
Определить избыток азота можно по внешнему виду растения. Помимо буйного роста, на проблему укажет темно-зеленая окраска и скрученные кончики листьев.

Распространенность элемента

Азот — это, пожалуй, один из самых распространенных элементов на нашей планете, он занимает четвертое место по распространенности. Элемент также найден в солнечной атмосфере, на планетах Уран и Нептун. Из азота состоят атмосферы Титана, Плутона и Тритона. Помимо этого, атмосфера Земли состоит на 78-79 процентов из этого химического элемента.

Азот играет важную биологическую роль, ведь он необходим для существования растений и животных. Даже тело человека содержит от 2 до 3 процентов этого химического элемента. Входит в состав хлорофилла, аминокислот, белков, нуклеиновых кислот.

Азот - это смесь

Жидкий азот

Жидкий азот — это бесцветная прозрачная жидкость, является одним из агрегатных состояний химического вещества. Жидкий азот широко используется в промышленности, строительстве и медицине. Он используется при заморозке органических материалов, охлаждения техники, а в медицине для удаления бородавок (эстетическая медицина).

Жидкий азот не токсичен, а также не взрывоопасен.

Смесь или чистое вещество?

Даже ученые первой половины 18 века, которым удалось выделить химический элемент, думали, что азот — это смесь. Но существует большая разница между этими понятиями.

Чистое вещество имеет целый комплекс постоянных свойств, таких как состав, физические и химические свойства. А смесь — это соединение, в которое входит два или больше химических элемента.

Сейчас мы знаем, что азот — это чистое вещество, так как он является химическим элементом.

При изучении химии очень важно понять, что азот является основой всей химии. Он образует различные соединения, которые всем нам встречаются, это и веселящий газ, и бурый газ, и аммиак, и азотная кислота. Недаром химия в школе начинается именно с изучения такого химического элемента, как азот.

Источники


  • https://ru.wikipedia.org/wiki/%D0%90%D0%B7%D0%BE%D1%82
  • https://www.niikm.ru/articles/element_articles/nitrogenium/
  • https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/AZOT.html
  • http://himege.ru/azot-i-ego-soedineniya/
  • https://www.supersadovnik.ru/text/azotnye-udobrenija-1005696
  • https://7dach.ru/MarinaGerasimenko/azbuka-podkormok-azotnye-udobreniya-15383.html
  • https://FB.ru/article/244442/azot—eto-chto-za-veschestvo-tipyi-i-svoystva-azota

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все о даче, огороде и посадке растений